Dynamical backaction cooling with free electrons

نویسندگان

  • A Niguès
  • A Siria
  • P Verlot
چکیده

The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of ground state cooling of a mechanical oscillator using dynamical backaction.

A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical backaction is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the optical cavity linewidth. It is shown that the final average occupancy can be retrieved directly...

متن کامل

Classical Analysis of Cavity Optomechanics

We present a classical analysis of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Our analysis is related to the problem of cooling an optomechanical setup to degrees near the ground state of mechanical motion according to quantum theory. Achieving this could provide an insight into quantum phenomena occurring in macro-sc...

متن کامل

Mechanical oscillation and cooling actuated by the optical gradient force.

In this work, we combine the large per-photon optical gradient force with the sensitive feedback of a high quality factor whispering-gallery microcavity. The cavity geometry, consisting of a pair of silica disks separated by a nanoscale gap, shows extremely strong dynamical backaction, powerful enough to excite coherent oscillations even under heavily damped conditions (mechanical Q approximate...

متن کامل

An Optomechanical Elevator: Transport of a Bloch Oscillating Bose–Einstein Condensate up and down an Optical Lattice by Cavity Sideband Amplification and Cooling

In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose–Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of the atoms on the...

متن کامل

High thermoelectric figure-of-merit in kondo insulator nanowires at low temperatures.

We predict a large thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures. The high ZT values are due to the Kondo effect for electrons and boundary scattering on phonons. We simulated the electron properties of the bulk Kondo insulators within the framework of dynamical mean field theory and found that electrons have short mean free path. In nanowire structures, electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015